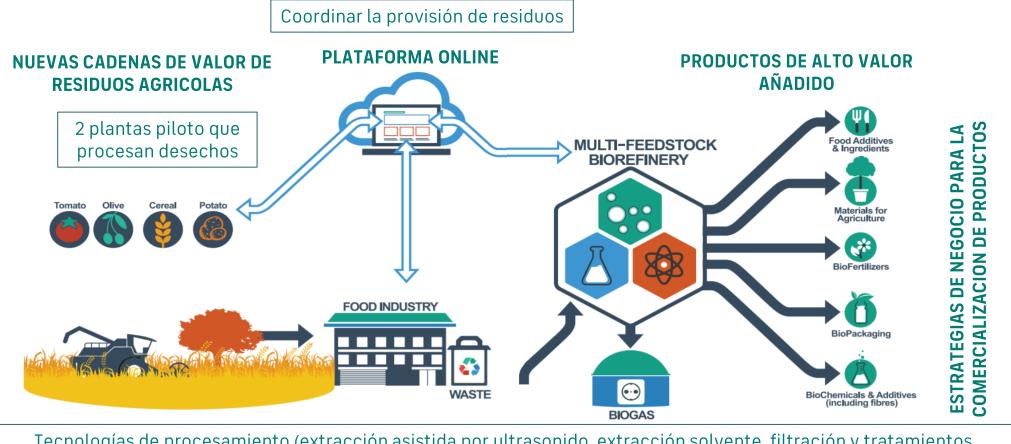


Valorización de residuos agrícolas para aplicaciones de envase

Soraya Sanchez, PhD ITENE

Contenidos

- 1/ Objetivos proyecto AGRIMAX
- Producción de nuevos materiales a partir de residuos agroalimentarios.
- ³/ Validación de los materiales desarrollados en aplicaciones de envase
- 4/ Conclusiones



Objetivos proyecto AGRIMAX

Objetivo

Objetivo principal

El objetivo principal del proyecto AGRIMAX es promover el aprovechamiento de los subproductos de la industria agroalimentaria para su utilización como aditivos e ingredientes de uso alimentario, y para su uso en procesos de producción de microorganismos. Además, el proyecto permitirá también trabajar con residuos de la producción de tomates, cereales, olivas y patatas para obtener nuevas fibras, biogás y nuevos materiales para aplicaciones de envase y agricultura.

Tecnologías de procesamiento (extracción asistida por ultrasonido, extracción solvente, filtración y tratamientos térmicos y enzimáticos) para producir compuestos de base biológica con aplicaciones de alto valor.

Busca convertir el 40% de los residuos que reciben las plantas piloto en **materiales de alto valor** añadido.

NUEVOS PRODUCTOS

- Envases biobasados (recubrimientos biobasados, biocompuestos y envases "activos")
- Ingredientes alimentarios (aditivos naturales y productos alimenticios funcionales con beneficios para la salud).
- Productos agrícolas biobasados (fertilizantes y macetas biodegradables).

Producción de nuevos materiales a partir de residuos agroalimentarios.

agrimax

²/ Producción de nuevos materiales a partir de residuos agroalimentarios.

Residuo: Salvado de trigo

Desarrollo: Biopolímeros basados en micelios

Residuo: Salvado de trigo

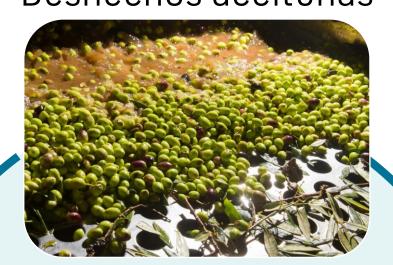
Desarrollo: Biopolímeros a partir de residuos.

Desarrollo: Bio-compuestos y Recubrimientos basados en fibras de celulosa

Desarrollo: Aditivos antimicrobianos/antioxidantes

²/ Producción de nuevos materiales a partir de residuos agroalimentarios.

Residuo: Pieles de tomate y deshechos de aceitunas.


Residuo: Pieles de tomate

Desarrollo: SSICA Recubrimientos basados en cutina

Residuo: Deshechos aceitunas

Desarrollo: RIS Compuestos bio-activos

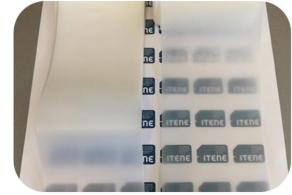
Desarrollo: Bio-compuestos

agrimax

Nuevos biopolímeros para aplicaciones de envase:

Producción de biopolímeros basados en micelios para aplicaciones de envases para la venta al por menor.

Nuevos biopolímeros para aplicaciones de envase:


- Producción de biopolímeros a partir de los residuos agrícolas del salvado de trigo para aplicaciones de envase.

Producción de film por extrusión de lámina plana

Producción de envase rígido por inyección

Recubrimientos biobasados para aplicaciones de envase:

- Recubrimientos basados en la cutina procedente de residuos de tomate para aplicaciones de envase metálico.

Proceso de purificación de la cutina

Producción de la bio-resina

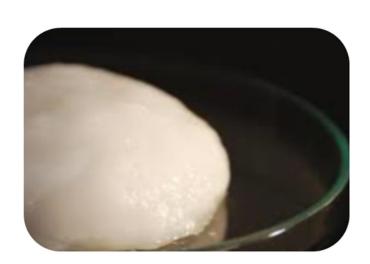
Producción del bio-barniz

Aplicación del bio-barniz en el envase

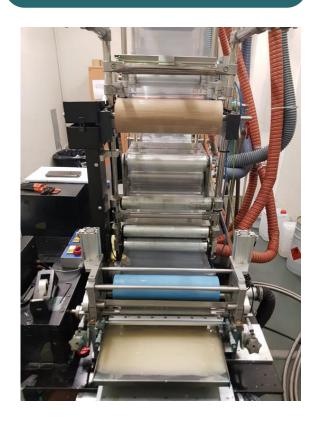
Recubrimientos biobasados para aplicaciones de envase:

Recubrimientos basados en fibras de celulosa para aplicaciones de envase flexible.

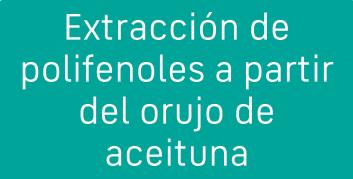
Producción de MFC a partir de residuos agrícolas

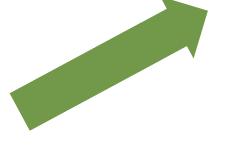

Preparación recubrimientos basados en MFC

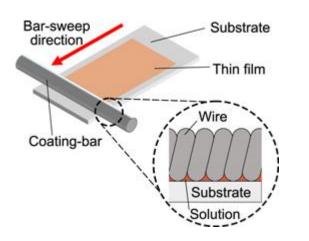
Aplicación del recubrimiento sobre sustrato PLA



Proceso de laminado por roll-to-roll




Producción de materiales bio-basados activos para aplicaciones de envase:

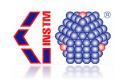

Incorporación de bio-compuestos activos procedentes de los residuos de aceitunas para aplicaciones de envase.

Incorporación del compuesto activo por recubrimiento

Incorporación del compuesto activo en masa (componding)

Recubrimientos biobasados para aplicaciones de envase:

Recubrimientos basados en fibras de celulosa para aplicaciones de envase.


Producción de

prototipos de

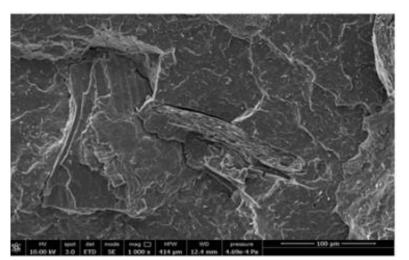
envase rígido y

Producción de materiales compuestos bio-basados para aplicaciones de envase:

Producción de materiales compuestos bio-basados para aplicaciones de envase alimentario.

Producción de fibras naturales a partir de residuos

Proceso de compatibilización fibras/polímero


Proceso de compounding

Producción de prototipos de envase rígido

4/ Conclusiones

agrimax

4/ Conclusiones

Resultados: productos de alto valor

- Obtención de compuestos de alto valor añadido a partir de residuos agrícolas.
- Obtención de aditivos naturales con propiedades antimicrobianas y antioxidantes.
- Desarrollo de biopolímeros y recubrimientos bio-basados para aplicaciones de envase procedentes de nuevas fuentes.
- Desarrollo de bio-compuestos con fibras naturales provenientes de residuos agrícolas.

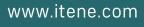
Nuevos conocimientos

- Desarrollo de nuevos biopolímeros con propiedades mecánicas y barrera mejoradas.
- Uso de MFC como recubrimiento para aplicaciones de envase de alta barrera.
- Posibilidad de emplear cutina como material base para la producción de recubrimientos protectores más sostenibles para envases metálicos.
- Potencial del uso de fibras naturales para la mejora del comportamiento térmico, mecánico y barrera en biocompuestos para envase.

Outputs valorizables

- Acceso a nuevas redes de contactos y vínculos para nuevas oportunidades de colaboración.
- Mejora cualificación profesional de los colaboradores.
- Posibilidad de llevar a cabo tareas de difusión y divulgación de los desarrollos obtenidos a todos los eslabones de la cadena de valor del sector del envase.

Soraya Sánchez Ballester, PhD


(+34) 672 387 712 soraya.sanchez@itene.com

